With their research, Darren Johnson and his lab seek to create solutions that prevent toxic waste and detect and remove contaminants from the environment. One of the biggest successes that emerged from the Johnson Lab began as a failure during a collaboration with the Haley lab. An experiment intended to create chloride sensors produced a sensor that was selective for nitrate instead of chloride. An effective nitrate sensor, however, has the potential to be highly useful in agriculture. “Over one percent of the world’s energy goes to making ammonium nitrate fertilizer,” Johnson says, “and 30% of that’s wasted and ends up as an environmental pollutant, but it’s also lost revenue for the farmers — in the U.S. that’s 2.5 billion dollars of wasted fertilizer.” Johnson, Michael Haley and their former graduate student Calden Carroll “pitched [the sensor] to a federal agency to form a start up company, and have now raised 1.3 million in funding.” Carroll now heads the company, which incorporated in 2012, employs three other UO alumni, and receives support from the National Science Foundation’s Small Business Innovation Research Program, the Oregon Nanoscience and Microtechnologies Institute and the Oregon Built Environment & Sustainable Technologies Center.
To foster business success stories like that of Carroll for other university students, Johnson and the CSMC partnered with ecosVC to implement their Lens of the Market Innovation Program. The Lens of the Market Program helps students make the transition from classrooms and university laboratories to professional life by helping them develop entrepreneurial skills. “If you have a really fundamental understanding of market analysis,” Johnson says, “it can really help science research. Chemists are problem solvers, we want to know important problems, and understanding the market can really help you pick good problems.”
For Johnson, the Lens of the Market Program is one of many features that make the University of Oregon’s Materials Science Institute stand out among its peers. In addition, he names the “student-focused” nature of the program, with an emphasis on “cross-disciplinary” training. “We compete [with other universities’ science programs] by being collaborative,” Johnson says, with “smaller groups and more collaborations between the groups. We compete with facilities, because our facilities are phenomenal for a department our size, and we don’t share them with a big engineering school, or a big medical school, and that’s a huge advantage we have. […] This is a really exciting time to be a Duck, in the sciences, moving forward.”